On L 3, Infinity-solutions to the Navier-Stokes equations and backward uniqueness L Escauriaza, G Seregin, V Sverak | 837 | 2002 |

Liouville theorems for the Navier–Stokes equations and applications G Koch, N Nadirashvili, GA Seregin, V Šverák | 318 | 2009 |

On partial regularity of suitable weak solutions to the three-dimensional Navier—Stokes equations OA Ladyzhenskaya, GA Seregin Journal of Mathematical Fluid Mechanics 1, 356-387, 1999 | 297 | 1999 |

Variational methods for problems from plasticity theory and for generalized Newtonian fluids M Fuchs, G Seregin Springer Science & Business Media, 2000 | 277 | 2000 |

Backward uniqueness for parabolic equations L Escauriaza, G Seregin, V Šverák Archive for rational mechanics and analysis 169, 147-157, 2003 | 251 | 2003 |

Regularity results for parabolic systems related to a class of non-Newtonian fluids E Acerbi, G Mingione, GA Seregin Annales de l'Institut Henri Poincaré C, Analyse non linéaire 21 (1), 25-60, 2004 | 211 | 2004 |

Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions MD Gunzburger, HC Lee, GA Seregin Journal of Mathematical Fluid Mechanics 2, 219-266, 2000 | 202 | 2000 |

Oxidant-controlled regioselectivity in the oxidative arylation of N-acetylindoles S Potavathri, AS Dumas, TA Dwight, GR Naumiec, JM Hammann, ... Tetrahedron letters 49 (25), 4050-4053, 2008 | 182 | 2008 |

Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions H Jia, V Šverák Inventiones mathematicae 196, 233-265, 2014 | 173 | 2014 |

The real butterfly effect TN Palmer, A Döring, G Seregin Nonlinearity 27 (9), R123, 2014 | 146 | 2014 |

On divergence-free drifts G Seregin, L Silvestre, V Šverák, A Zlatoš Journal of Differential Equations 252 (1), 505-540, 2012 | 124 | 2012 |

Navier-Stokes equations with lower bounds on the pressure G Seregin, V Šverák Archive for rational mechanics and analysis 163, 65-86, 2002 | 123 | 2002 |

A certain necessary condition of potential blow up for Navier-Stokes equations G Seregin arXiv preprint arXiv:1104.3615, 2011 | 117 | 2011 |

On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations G Seregin, V Šverák Communications in Partial Differential Equations 34 (2), 171-201, 2009 | 115 | 2009 |

Liouville type theorem for stationary Navier–Stokes equations G Seregin Nonlinearity 29 (8), 2191, 2016 | 111 | 2016 |

Local regularity of suitable weak solutions to the Navier—Stokes equations near the boundary GA Seregin Journal of Mathematical Fluid Mechanics 4, 1-29, 2002 | 110 | 2002 |

Lecture notes on regularity theory for the Navier-Stokes equations G Seregin World Scientific, 2014 | 107 | 2014 |

Ergodicity results for the stochastic Navier–Stokes equations: an introduction P Constantin, A Debussche, GP Galdi, M Růžička, G Seregin, ... Topics in Mathematical Fluid Mechanics: Cetraro, Italy 2010, Editors: Hugo …, 2013 | 101 | 2013 |

An alternative approach to regularity for the Navier–Stokes equations in critical spaces CE Kenig, GS Koch Annales de l'IHP Analyse non linéaire 28 (2), 159-187, 2011 | 83 | 2011 |

Backward uniqueness for the heat operator in a half-space L Escauriaza, G Seregin, V Šverák St. Petersburg Mathematical Journal 15 (1), 139-148, 2004 | 77 | 2004 |