Riccardo Volpi
Riccardo Volpi
Researcher, Transylvanian Institute of Neuroscience (TINS)
Dirección de correo verificada de - Página principal
Citado por
Citado por
Understanding morphology-mobility dependence in PEDOT: Tos
N Rolland, JF Franco-Gonzalez, R Volpi, M Linares, IV Zozoulenko
Physical Review Materials 2 (4), 045605, 2018
Parameter estimation for the cosmic microwave background with Bayesian neural networks
HJ Hortúa, R Volpi, D Marinelli, L Malagò
Physical Review D 102 (10), 103509, 2020
Effect of Polarization on the Mobility of C60: A Kinetic Monte Carlo Study
R Volpi, S Kottravel, MS Nørby, S Stafstrom, M Linares
Journal of chemical theory and computation 12 (2), 812-824, 2016
Theoretical Study of the Charge-Transfer State Separation within Marcus Theory: The C60-Anthracene Case Study
R Volpi, R Nassau, MS Nørby, M Linares
ACS Applied Materials & Interfaces 8 (37), 24722-24736, 2016
Constraining the reionization history using Bayesian normalizing flows
HJ Hortúa, L Malagò, R Volpi
Machine Learning: Science and Technology 1 (3), 035014, 2020
Transition fields in organic materials: From percolation to inverted Marcus regime. A consistent Monte Carlo simulation in disordered PPV
R Volpi, S Stafström, M Linares
The Journal of Chemical Physics 142 (9), 2015
Modelling charge transport of discotic liquid-crystalline triindoles: the role of peripheral substitution
R Volpi, ACS Camilo, DA da Silva Filho, JTL Navarrete, B Gómez-Lor, ...
Physical Chemistry Chemical Physics 19 (35), 24202-24208, 2017
Mobility field and mobility temperature dependence in PC61BM: A kinetic Monte-Carlo study
L Sousa, R Volpi, DA da Silva Filho, M Linares
Chemical Physics Letters 689, 74-81, 2017
Organic solar cells
R Volpi, M Linares
Specialist Periodic Reports-Chemical Modelling, RSC 13, 1-26, 2016
Natural wake-sleep algorithm
C Várady, N Ay, R Volpi, L Malagò
Parameters estimation from the 21 cm signal using variational inference
HJ Hortúa, R Volpi, L Malagò
arXiv preprint arXiv:2005.02299, 2020
Accelerating mcmc algorithms through bayesian deep networks
HJ Hortua, R Volpi, D Marinelli, L Malago
arXiv preprint arXiv:2011.14276, 2020
Evaluating natural alpha embeddings on intrinsic and extrinsic tasks
R Volpi, L Malagò
Proceedings of the 5th Workshop on Representation Learning for NLP, 61-71, 2020
Evaluating the robustness of defense mechanisms based on autoencoder reconstructions against carlini-wagner adversarial attacks
P Hlihor, R Volpi, L Malagò
Proceedings of the Northern Lights Deep Learning Workshop 1, 6-6, 2020
Study of the cold charge transfer state separation at the TQ1/PC71BM interface
R Volpi, M Linares
Journal of computational chemistry 38 (14), 1039-1048, 2017
Natural alpha embeddings
R Volpi, L Malagò
Information Geometry 4 (1), 3-29, 2021
Reliable uncertainties for Bayesian neural networks using alpha-divergences
HJ Hortua, L Malago, R Volpi
arXiv preprint arXiv:2008.06729, 2020
Visual analysis of stochastic trajectory ensembles in organic solar cell design
S Kottravel, R Volpi, M Linares, T Ropinski, I Hotz
Informatics 4 (3), 25, 2017
Modelling Charge Transport for Organic Solar Cells within Marcus Theory
R Volpi
Linköping University Electronic Press, 2016
Changing the Geometry of Representations: α-Embeddings for NLP Tasks
R Volpi, U Thakur, L Malagò
Entropy 23 (3), 287, 2021
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20