Seguir
Jin Lu
Título
Citado por
Citado por
Año
VIGAN: Missing view imputation with generative adversarial networks
C Shang, A Palmer, J Sun, KS Chen, J Lu, J Bi
2017 IEEE International conference on big data (Big Data), 766-775, 2017
1242017
Edge attention-based multi-relational graph convolutional networks
C Shang, Q Liu, KS Chen, J Sun, J Lu, J Yi, J Bi
arXiv preprint arXiv: 1802.04944, 2018
1052018
Behavior vs. introspection: refining prediction of clinical depression via smartphone sensing data
AA Farhan, C Yue, R Morillo, S Ware, J Lu, J Bi, J Kamath, A Russell, ...
2016 IEEE wireless health (WH), 1-8, 2016
1002016
Joint modeling of heterogeneous sensing data for depression assessment via multi-task learning
J Lu, C Shang, C Yue, R Morillo, S Ware, J Kamath, A Bamis, A Russell, ...
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous …, 2018
762018
Multi-view bi-clustering to identify smartphone sensing features indicative of depression
AA Farhan, J Lu, J Bi, A Russell, B Wang, A Bamis
2016 IEEE first international conference on connected health: applications …, 2016
672016
Predicting depressive symptoms using smartphone data
S Ware, C Yue, R Morillo, J Lu, C Shang, J Bi, J Kamath, A Russell, ...
Smart Health 15, 100093, 2020
642020
Multi-view sparse co-clustering via proximal alternating linearized minimization
J Sun, J Lu, T Xu, J Bi
Proceedings of The 32nd International Conference on Machine Learning, 757-766, 2015
632015
Multi-view cluster analysis with incomplete data to understand treatment effects
G Chao, J Sun, J Lu, AL Wang, DD Langleben, CS Li, J Bi
Information sciences 494, 278-293, 2019
532019
Large-scale automatic depression screening using meta-data from wifi infrastructure
S Ware, C Yue, R Morillo, J Lu, C Shang, J Kamath, A Bamis, J Bi, ...
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous …, 2018
502018
A sparse interactive model for matrix completion with side information
J Lu, G Liang, J Sun, J Bi
Advances in neural information processing systems 29, 2016
382016
Fusing location data for depression prediction
C Yue, S Ware, R Morillo, J Lu, C Shang, J Bi, J Kamath, A Russell, ...
IEEE Transactions on Big Data 7 (2), 355-370, 2018
342018
Formation of point bars through rising and falling flood stages: Evidence from bar morphology, sediment transport and bed shear stress
C Wu, MS Ullah, J Lu, JP Bhattacharya
Sedimentology 63 (6), 1458-1473, 2016
322016
Behavior vs. introspection: refining prediction of clinical depression via smartphone sensing data. In 2016 IEEE Wireless Health (WH)
AA Farhan, C Yue, R Morillo, S Ware, J Lu, J Bi, J Kamath, A Russell, ...
WH 2016, 30-37, 2016
312016
A bisection reinforcement learning approach to 3-D indoor localization
F Dou, J Lu, T Xu, CH Huang, J Bi
IEEE Internet of Things Journal 8 (8), 6519-6535, 2020
192020
Automatic depression prediction using internet traffic characteristics on smartphones
C Yue, S Ware, R Morillo, J Lu, C Shang, J Bi, J Kamath, A Russell, ...
Smart Health 18, 100137, 2020
192020
Top-down indoor localization with Wi-fi fingerprints using deep Q-network
F Dou, J Lu, Z Wang, X Xiao, J Bi, CH Huang
2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems …, 2018
182018
Towards artificial general intelligence (agi) in the internet of things (iot): Opportunities and challenges
F Dou, J Ye, G Yuan, Q Lu, W Niu, H Sun, L Guan, G Lu, G Mai, N Liu, ...
arXiv preprint arXiv:2309.07438, 2023
92023
Edge attention-based multi-relational graph convolutional networks. arXiv e-prints
C Shang, Q Liu, KS Chen, J Sun, J Lu, J Yi
arXiv preprint arXiv:1802.04944, 2018
82018
On-device indoor positioning: A federated reinforcement learning approach with heterogeneous devices
F Dou, J Lu, T Zhu, J Bi
IEEE Internet of Things Journal, 2023
42023
Collaborative phenotype inference from comorbid substance use disorders and genotypes
J Lu, J Sun, X Wang, HR Kranzler, J Gelernter, J Bi
2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM …, 2017
22017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20