Seguir
Kerstin Hammernik
Kerstin Hammernik
Dirección de correo verificada de nvidia.com
Título
Citado por
Citado por
Año
Learning a variational network for reconstruction of accelerated MRI data
K Hammernik, T Klatzer, E Kobler, MP Recht, DK Sodickson, T Pock, ...
Magnetic resonance in medicine 79 (6), 3055-3071, 2018
17872018
Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues
F Knoll, K Hammernik, C Zhang, S Moeller, T Pock, DK Sodickson, ...
IEEE Signal Processing Magazine 37 (1), 128-140, 2020
3302020
Assessment of the generalization of learned image reconstruction and the potential for transfer learning
F Knoll, K Hammernik, E Kobler, T Pock, MP Recht, DK Sodickson
Magnetic resonance in medicine 81 (1), 116-128, 2019
2352019
CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions
T Küstner, N Fuin, K Hammernik, A Bustin, H Qi, R Hajhosseiny, PG Masci, ...
Scientific reports 10 (1), 13710, 2020
1992020
Variational networks: connecting variational methods and deep learning
E Kobler, T Klatzer, K Hammernik, T Pock
Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland …, 2017
1482017
A multi-center milestone study of clinical vertebral CT segmentation
J Yao, JE Burns, D Forsberg, A Seitel, A Rasoulian, P Abolmaesumi, ...
Computerized Medical Imaging and Graphics 49, 16-28, 2016
1372016
A deep learning architecture for limited-angle computed tomography reconstruction
K Hammernik, T Würfl, T Pock, A Maier
Bildverarbeitung für die Medizin 2017: Algorithmen-Systeme-Anwendungen …, 2017
1032017
Learning Joint Demosaicing and Denoising Based on Sequential Energy Minimization
T Klatzer, K Hammernik, P Knobelreiter, T Pock
Computational Photography (ICCP), 2016 IEEE International Conference on, 1-11, 2016
992016
Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity‐weighted coil combination
K Hammernik, J Schlemper, C Qin, J Duan, RM Summers, D Rueckert
Magnetic Resonance in Medicine 86 (4), 1859-1872, 2021
892021
Learning Diffeomorphic and Modality-invariant Registration using B-splines
H Qiu, C Qin, A Schuh, K Hammernik, D Rueckert
Medical Imaging with Deep Learning, 2021
612021
Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging
K Hammernik, T Küstner, B Yaman, Z Huang, D Rueckert, F Knoll, ...
IEEE Signal Processing Magazine 40 (1), 98-114, 2023
56*2023
Inverse GANs for accelerated MRI reconstruction
D Narnhofer, K Hammernik, F Knoll, T Pock
Wavelets and Sparsity XVIII 11138, 381-392, 2019
522019
Vertebrae Segmentation in 3D CT Images Based on a Variational Framework
K Hammernik, T Ebner, D Stern, M Urschler, T Pock
Recent Advances in Computational Methods and Clinical Applications for Spine …, 2015
502015
Spray Drying of Aqueous Salbutamol Sulfate Solutions Using the Nano Spray Dryer B-90—The Impact of Process Parameters on Particle Size
EM Littringer, S Zellnitz, K Hammernik, V Adamer, H Friedl, NA Urbanetz
Drying Technology 31 (12), 1346-1353, 2013
502013
Cardiac MR: from theory to practice
TF Ismail, W Strugnell, C Coletti, M Božić-Iven, S Weingaertner, ...
Frontiers in cardiovascular medicine 9, 826283, 2022
442022
Bayesian uncertainty estimation of learned variational MRI reconstruction
D Narnhofer, A Effland, E Kobler, K Hammernik, F Knoll, T Pock
IEEE Transactions on Medical Imaging 41 (2), 279-291, 2021
442021
Complementary time‐frequency domain networks for dynamic parallel MR image reconstruction
C Qin, J Duan, K Hammernik, J Schlemper, T Küstner, R Botnar, C Prieto, ...
Magnetic Resonance in Medicine 86 (6), 3274-3291, 2021
392021
Machine learning for image reconstruction
K Hammernik, F Knoll
Handbook of Medical Image Computing and Computer Assisted Intervention, 25-64, 2020
392020
Learning a Variational Model for Compressed Sensing MRI Reconstruction
K Hammernik, F Knoll, D Sodickson, T Pock
Proceedings of the International Society of Magnetic Resonance in Medicine …, 2016
392016
Cooperative training and latent space data augmentation for robust medical image segmentation
C Chen, K Hammernik, C Ouyang, C Qin, W Bai, D Rueckert
Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th …, 2021
372021
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20