Markus Schoeberl
Markus Schoeberl
Johannes Kepler University Linz, Institute of Automatic Control and Control Systems Technology
Verified email at - Homepage
Cited by
Cited by
Construction of flat outputs by reduction and elimination
K Schlacher, M Schöberl
IFAC Proceedings Volumes 40 (12), 693-698, 2007
Applications of energy based control methods for the inverted pendulum on a cart
A Siuka, M Schöberl
Robotics and Autonomous Systems 57 (10), 1012-1017, 2009
On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems
M Schöberl, A Siuka
IEEE Trans. Autmat. Contr. 58 (7), 1823 - 1828, 2013
Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators
M Schöberl, A Siuka
Automatica 50 (2), 607-613, 2014
Port-Hamiltonian modelling and energy-based control of the Timoshenko beam
A Siuka, M Schöberl, K Schlacher
Acta Mechanica 222 (1), 69-89, 2011
Modelling of piezoelectric structures–a Hamiltonian approach
M Schöberl, H Ennsbrunner, K Schlacher
Mathematical and Computer Modelling of Dynamical Systems 14 (3), 179-193, 2008
On an implicit triangular decomposition of nonlinear control systems that are 1-flat—A constructive approach
M Schöberl, K Schlacher
Automatica 50 (6), 1649-1655, 2014
A Jet Space Approach to Check Pfaffian Systems for Flatness
K Schlacher, M Schöberl
IEEE 52nd Annual Conference on Decision and Control (CDC), 2576- 2581, 2013
System parametrization using affine derivative systems
M Schöberl, K Rieger, K Schlacher
Proceedings 19th International Symposium on Mathematical Theory of Networks …, 2010
Covariant formulation of the governing equations of continuum mechanics in an Eulerian description
M Schöberl, K Schlacher
Journal of mathematical physics 48 (5), 052902, 2007
Contributions to the Analysis of Structural Properties of Dynamical Systems in Control and Systems Theory: A Geometric Approach
M Schöberl
Shaker, 2014
Analysis and Comparison of Port-Hamiltonian Formulations for Field Theories-demonstrated by means of the Mindlin plate
M Schoberl, A Siuka
Control Conference (ECC), 2013 European, 548-553, 2013
On calculating flat outputs for pfaffian systems by a reduction procedure-demonstrated by means of the vtol example
M Schöberl, K Schlacher
2011 9th IEEE International Conference on Control and Automation (ICCA), 477-482, 2011
On casimir functionals for field theories in port-hamiltonian description for control purposes
M Schöberl, A Siuka
2011 50th IEEE Conference on Decision and Control and European Control …, 2011
An introduction to algebraic discrete-time linear parametric identification with a concrete application
M Fliess, S Fuchshumer, M Schöberl, K Schlacher, H Sira-Ramirez
Journal Européen des Systčmes Automatisés 42 (2-3), 210-232, 2008
First-order Hamiltonian field theory and mechanics
M Schöberl, K Schlacher
Mathematical and Computer Modelling of Dynamical Systems 17 (1), 105-121, 2011
Optimal Motion Planning and Energy-Based Control of a Single Mast Stacker Crane
H Rams, M Schöberl, K Schlacher
IEEE Transactions on Control Systems Technology 26 (4), 1449-1457, 2018
On the port-Hamiltonian representation of systems described by partial differential equations
M Schöberl, A Siuka
IFAC Proceedings Volumes 45 (19), 1-6, 2012
Construction of Flat Outputs of Nonlinear Discrete-Time Systems in a Geometric and an Algebraic Framework
B Kolar, A Kaldmäe, M Schöberl, Ü Kotta, K Schlacher
IFAC-PapersOnLine 49 (18), 796-801, 2016
On structural invariants in the energy based control of port-Hamiltonian systems with second-order Hamiltonian
H Rams, M Schöberl
2017 American Control Conference (ACC), 1139-1144, 2017
The system can't perform the operation now. Try again later.
Articles 1–20