Fokker–Planck–Kolmogorov Equations VI Bogachev, NV Krylov, M Röckner, SV Shaposhnikov American Mathematical Society, 2022 | 428 | 2022 |

Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations VI Bogachev, M Röckner, SV Shaposhnikov Journal of Functional Analysis 271 (5), 1262-1300, 2016 | 69 | 2016 |

Global regularity and estimates for solutions of parabolic equations VI Bogachev, M Röckner, SV Shaposhnikov Teoriya Veroyatnostei i ee Primeneniya 50 (4), 652-674, 2005 | 47* | 2005 |

On uniqueness problems related to elliptic equations for measures VI Bogachev, M Röckner, SV Shaposhnikov Journal of Mathematical Sciences 176 (6), 759-773, 2011 | 45 | 2011 |

Estimates of densities of stationary distributions and transition probabilities of diffusion processes VI Bogachev, M Röckner, SV Shaposhnikov Theory of Probability & Its Applications 52 (2), 209-236, 2008 | 44 | 2008 |

On uniqueness problems related to the Fokker–Planck–Kolmogorov equation for measures VI Bogachev, M Röckner, SV Shaposhnikov J. Math. Sci.(New York) 179 (1), 7-47, 2011 | 42 | 2011 |

On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equations OA Manita, MS Romanov, SV Shaposhnikov Nonlinear Analysis 128, 199-226, 2015 | 39 | 2015 |

On the Ambrosio–Figalli–Trevisan superposition principle for probability solutions to Fokker–Planck–Kolmogorov equations VI Bogachev, M Röckner, SV Shaposhnikov Journal of Dynamics and Differential Equations 33, 715-739, 2021 | 38 | 2021 |

Nonlinear parabolic equations for measures O Manita, S Shaposhnikov St. Petersburg Mathematical Journal 25 (1), 43-62, 2014 | 38 | 2014 |

On positive and probability solutions to the stationary Fokker-Planck-Kolmogorov equation. V Bogachev, M Röckner, S Shaposhnikov Doklady Mathematics 85 (3), 2012 | 38 | 2012 |

On nonuniqueness of solutions to elliptic equations for probability measures SV Shaposhnikov Journal of Functional Analysis 254 (10), 2690-2705, 2008 | 32 | 2008 |

Convergence in variation of solutions of nonlinear Fokker–Planck–Kolmogorov equations to stationary measures VI Bogachev, M Röckner, SV Shaposhnikov Journal of Functional Analysis 276 (12), 3681-3713, 2019 | 31 | 2019 |

Integrability and continuity of solutions to double divergence form equations VI Bogachev, SV Shaposhnikov Annali di Matematica Pura ed Applicata (1923-) 196 (5), 1609-1635, 2017 | 31 | 2017 |

An analytic approach to infinite-dimensional continuity and Fokker-Planck-Kolmogorov equations VI Bogachev, G Da Prato, M Röckner, SV Shaposhnikov arXiv preprint arXiv:1305.7348, 2013 | 23 | 2013 |

On the Cauchy problem for Fokker–Planck–Kolmogorov equations with potential terms on arbitrary domains OA Manita, SV Shaposhnikov Journal of Dynamics and Differential Equations 28, 493-518, 2016 | 22 | 2016 |

Uniqueness problems for degenerate Fokker–Planck–Kolmogorov equations VI Bogachev, M Röckner, SV Shaposhnikov Journal of Mathematical Sciences 207, 147-165, 2015 | 21 | 2015 |

On the uniqueness of solutions to continuity equations VI Bogachev, G Da Prato, M Röckner, SV Shaposhnikov Journal of Differential Equations 259 (8), 3854-3873, 2015 | 20 | 2015 |

The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker-Planck-Kolmogorov equations VI Bogachev, AI Kirillov, SV Shaposhnikov Mathematical Notes 96, 855-863, 2014 | 19 | 2014 |

On uniqueness of solutions to the Cauchy problem for degenerate Fokker-Planck-Kolmogorov equations VI Bogachev, SV Shaposhnikov, M Röckner Journal of Evolution Equations 13 (3), 577-593, 2013 | 19 | 2013 |

On the uniqueness of integrable and probability solutions to the cauchy problem for the Fokker-Planck-Kolmogorov equations. SV Shaposhnikov Doklady Mathematics 84 (1), 2011 | 19 | 2011 |