Pim Moeskops
Pim Moeskops
Verified email at
Cited by
Cited by
Automatic segmentation of MR brain images with a convolutional neural network
P Moeskops, MA Viergever, AM Mendrik, LS de Vries, M Benders, I Isgum
IEEE Transactions on Medical Imaging 35 (5), 1252-1261, 2016
Deep learning for multi-task medical image segmentation in multiple modalities
P Moeskops, JM Wolterink, BHM Van Der Velden, KGA Gilhuijs, T Leiner, ...
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th …, 2016
Benchmark on automatic six-month-old infant brain segmentation algorithms: the iSeg-2017 challenge
L Wang, D Nie, G Li, É Puybareau, J Dolz, Q Zhang, F Wang, J Xia, Z Wu, ...
IEEE transactions on medical imaging 38 (9), 2219-2230, 2019
Adversarial training and dilated convolutions for brain MRI segmentation
P Moeskops, M Veta, MW Lafarge, KAJ Eppenhof, JPW Pluim
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical …, 2017
Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway
EJL Brunenberg, P Moeskops, WH Backes, C Pollo, L Cammoun, ...
PloS one 7 (6), e39061, 2012
Domain-adversarial neural networks to address the appearance variability of histopathology images
MW Lafarge, JPW Pluim, KAJ Eppenhof, P Moeskops, M Veta
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical …, 2017
Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI
P Moeskops, J de Bresser, HJ Kuijf, AM Mendrik, GJ Biessels, JPW Pluim, ...
NeuroImage: Clinical 17, 251-262, 2018
Deformable image registration using convolutional neural networks
KAJ Eppenhof, MW Lafarge, P Moeskops, M Veta, JPW Pluim
Medical Imaging 2018: Image Processing 10574, 192-197, 2018
Perioperative neonatal brain injury is associated with worse school‐age neurodevelopment in children with critical congenital heart disease
NHP Claessens, SO Algra, TL Ouwehand, NJG Jansen, R Schappin, ...
Developmental Medicine & Child Neurology 60 (10), 1052-1058, 2018
Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge
I Išgum, MJNL Benders, B Avants, MJ Cardoso, SJ Counsell, EF Gomez, ...
Medical image analysis 20 (1), 135-151, 2015
Automatic segmentation of MR brain images of preterm infants using supervised classification
P Moeskops, MJNL Benders, SM Chiţǎ, KJ Kersbergen, F Groenendaal, ...
NeuroImage 118, 628-641, 2015
Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants
P Moeskops, MJNL Benders, KJ Kersbergen, F Groenendaal, LS de Vries, ...
PLOS ONE 10 (7), e0131552, 2015
Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants
KJ Kersbergen, F Leroy, I Išgum, F Groenendaal, LS de Vries, ...
Neuroimage 142, 301-310, 2016
Delayed cortical gray matter development in neonates with severe congenital heart disease
NHP Claessens, P Moeskops, A Buchmann, B Latal, W Knirsch, I Scheer, ...
Pediatric Research 80, 668–674, 2016
Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images
P Moeskops, I Išgum, K Keunen, NHP Claessens, IC van Haastert, ...
Scientific reports 7 (1), 2163, 2017
Severe retinopathy of prematurity is associated with reduced cerebellar and brainstem volumes at term and neurodevelopmental deficits at 2 years
FJ Drost, K Keunen, P Moeskops, NHP Claessens, F Van Kalken, I Išgum, ...
Pediatric Research 83 (4), 818-824, 2018
Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants
ML Tataranno, NHP Claessens, P Moeskops, MC Toet, KJ Kersbergen, ...
Pediatric research 83 (4), 834-842, 2018
Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
N Khalili, E Turk, M Benders, P Moeskops, NHP Claessens, R de Heus, ...
NeuroImage: Clinical 24, 102061, 2019
Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images
P Moeskops, MA Viergever, MJNL Benders, I Išgum
Medical Imaging 2015: Image Processing 9413, 304-309, 2015
Automatic segmentation of the intracranial volume in fetal MR images
N Khalili, P Moeskops, NHP Claessens, S Scherpenzeel, E Turk, ...
Fetal, Infant and Ophthalmic Medical Image Analysis: International Workshop …, 2017
The system can't perform the operation now. Try again later.
Articles 1–20