An alternative formulation of finite difference weighted ENO schemes with Lax--Wendroff time discretization for conservation laws Y Jiang, CW Shu, M Zhang SIAM Journal on Scientific Computing 35 (2), A1137-A1160, 2013 | 140 | 2013 |
Free-stream preserving finite difference schemes on curvilinear meshes Y Jiang, CW Shu, M Zhang Methods and applications of analysis 21 (1), 1-30, 2014 | 60 | 2014 |
Energy stable discontinuous Galerkin methods for Maxwell's equations in nonlinear optical media VA Bokil, Y Cheng, Y Jiang, F Li Journal of Computational Physics 350, 420-452, 2017 | 48 | 2017 |
A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes AJ Christlieb, X Feng, Y Jiang, Q Tang SIAM Journal on Scientific Computing 40 (4), A2631-A2666, 2018 | 30 | 2018 |
High spatial order energy stable FDTD methods for Maxwell’s equations in nonlinear optical media in one dimension VA Bokil, Y Cheng, Y Jiang, F Li, P Sakkaplangkul Journal of Scientific Computing 77, 330-371, 2018 | 24 | 2018 |
High order finite difference multi-resolution WENO method for nonlinear degenerate parabolic equations Y Jiang Journal of Scientific Computing 86, 1-20, 2021 | 23 | 2021 |
Kernel based high order “explicit” unconditionally stable scheme for nonlinear degenerate advection-diffusion equations A Christlieb, W Guo, Y Jiang, H Yang Journal of Scientific Computing 82 (3), 52, 2020 | 21 | 2020 |
A WENO-based method of lines transpose approach for Vlasov simulations A Christlieb, W Guo, Y Jiang Journal of Computational Physics 327, 337-367, 2016 | 19 | 2016 |
An adaptive high-order piecewise polynomial based sparse grid collocation method with applications Z Tao, Y Jiang, Y Cheng Journal of Computational Physics 433, 109770, 2021 | 16 | 2021 |
A kernel based high order “explicit” unconditionally stable scheme for time dependent Hamilton–Jacobi equations A Christlieb, W Guo, Y Jiang Journal of Computational Physics 379, 214-236, 2019 | 10 | 2019 |
Dispersion analysis of finite difference and discontinuous Galerkin schemes for Maxwell's equations in linear Lorentz media Y Jiang, P Sakkaplangkul, VA Bokil, Y Cheng, F Li Journal of Computational Physics 394, 100-135, 2019 | 9 | 2019 |
A high order boundary scheme to simulate complex moving rigid body under impingement of shock wave Z Cheng, S Liu, Y Jiang, J Lu, M Zhang, S Zhang Applied Mathematics and Mechanics 42 (6), 841-854, 2021 | 7 | 2021 |
Free-stream preserving finite difference schemes for ideal magnetohydrodynamics on curvilinear meshes Y Yu, Y Jiang, M Zhang Journal of Scientific Computing 82, 1-26, 2020 | 7 | 2020 |
An oscillation free local discontinuous Galerkin method for nonlinear degenerate parabolic equations Q Tao, Y Liu, Y Jiang, J Lu Numerical Methods for Partial Differential Equations 39 (4), 3145-3169, 2023 | 6 | 2023 |
A high order moving boundary treatment for convection-diffusion equations S Liu, Y Jiang, CW Shu, M Zhang, S Zhang Journal of Computational Physics 473, 111752, 2023 | 6 | 2023 |
Numerical simulation of a complex moving rigid body under the impingement of a shock wave in 3D S Liu, Z Cheng, Y Jiang, J Lu, M Zhang, S Zhang Advances in Aerodynamics 4 (1), 8, 2022 | 6 | 2022 |
A moving mesh WENO method based on exponential polynomials for one-dimensional conservation laws A Christlieb, W Guo, Y Jiang, H Yang Journal of Computational Physics 380, 334-354, 2019 | 5 | 2019 |
High-order finite difference WENO schemes with positivity-preserving limiter for correlated random walk with density-dependent turning rates Y Jiang, CW Shu, M Zhang Mathematical Models and Methods in Applied Sciences 25 (08), 1553-1588, 2015 | 5 | 2015 |
High order finite difference WENO methods for shallow water equations on curvilinear meshes Z Liu, Y Jiang, M Zhang, Q Liu Communications on Applied Mathematics and Computation 5 (1), 485-528, 2023 | 2 | 2023 |
A new type of simplified inverse Lax-Wendroff boundary treatment I: hyperbolic conservation laws S Liu, T Li, Z Cheng, Y Jiang, CW Shu, M Zhang arXiv preprint arXiv:2402.10152, 2024 | 1 | 2024 |