Seguir
Philipp Krähenbühl
Philipp Krähenbühl
Dirección de correo verificada de cs.utexas.edu - Página principal
Título
Citado por
Citado por
Año
Context encoders: Feature learning by inpainting
D Pathak, P Krahenbuhl, J Donahue, T Darrell, AA Efros
Proceedings of the IEEE conference on computer vision and pattern …, 2016
66132016
Objects as points
X Zhou, D Wang, P Krähenbühl
arXiv preprint arXiv:1904.07850, 2019
43672019
Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
P Krähenbühl, V Koltun
NIPS, 2011
41112011
Adversarial feature learning
J Donahue, P Krähenbühl, T Darrell
arXiv preprint arXiv:1605.09782, 2016
25102016
Saliency filters: Contrast based filtering for salient region detection
F Perazzi, P Krähenbühl, Y Pritch, A Hornung
2012 IEEE conference on computer vision and pattern recognition, 733-740, 2012
23372012
Center-based 3d object detection and tracking
T Yin, X Zhou, P Krähenbühl
CVPR, 2021
16912021
Generative visual manipulation on the natural image manifold
JY Zhu, P Krähenbühl, E Shechtman, AA Efros
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016
16042016
Tracking Objects as Points
X Zhou, V Koltun, P Krähenbühl
ECCV, 2020
12482020
Bottom-up object detection by grouping extreme and center points
X Zhou, J Zhuo, P Krahenbuhl
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
11722019
Sampling matters in deep embedding learning
CY Wu, R Manmatha, AJ Smola, P Krähenbühl
ICCV 2017, 2017
10952017
Constrained convolutional neural networks for weakly supervised segmentation
D Pathak, P Krahenbuhl, T Darrell
Proceedings of the IEEE international conference on computer vision, 1796-1804, 2015
7742015
Long-term feature banks for detailed video understanding
CY Wu, C Feichtenhofer, H Fan, K He, P Krahenbuhl, R Girshick
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
5792019
Detecting twenty-thousand classes using image-level supervision
X Zhou, R Girdhar, A Joulin, P Krähenbühl, I Misra
European Conference on Computer Vision, 350-368, 2022
5312022
Learning by cheating
D Chen, B Zhou, V Koltun, P Krähenbühl
Conference on Robot Learning, 66-75, 2019
4982019
Geodesic object proposals
P Krähenbühl, V Koltun
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland …, 2014
4732014
Learning dense correspondence via 3d-guided cycle consistency
T Zhou, P Krahenbuhl, M Aubry, Q Huang, AA Efros
Proceedings of the IEEE conference on computer vision and pattern …, 2016
4352016
Compressed video action recognition
CY Wu, M Zaheer, H Hu, R Manmatha, AJ Smola, P Krähenbühl
Proceedings of the IEEE conference on computer vision and pattern …, 2018
4032018
Video compression through image interpolation
CY Wu, N Singhal, P Krahenbuhl
Proceedings of the European conference on computer vision (ECCV), 416-431, 2018
3802018
A system for retargeting of streaming video
P Krähenbühl, M Lang, A Hornung, M Gross
ACM SIGGRAPH Asia 2009 papers, 1-10, 2009
3082009
Probabilistic two-stage detection
X Zhou, V Koltun, P Krähenbühl
arXiv preprint arXiv:2103.07461, 2021
2912021
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20