Multiple solutions for a class of double phase problem without the Ambrosetti–Rabinowitz conditions B Ge, DJ Lv, JF Lu Nonlinear Analysis 188, 294-315, 2019 | 62 | 2019 |

Periodic solution for a non-autonomous Lotka–Volterra predator–prey model with random perturbation L Zu, D Jiang, D O'Regan, B Ge Journal of Mathematical Analysis and Applications 430 (1), 428-437, 2015 | 56 | 2015 |

Wireless device identification based on radio frequency fingerprint features Y Lin, J Jia, S Wang, B Ge, S Mao ICC 2020-2020 IEEE International Conference on Communications (ICC), 1-6, 2020 | 48 | 2020 |

Existence of one weak solution for *p*(*x*)-biharmonic equations with Navier boundary conditionsS Heidarkhani, GA Afrouzi, S Moradi, G Caristi, B Ge Zeitschrift für angewandte Mathematik und Physik 67 (3), 73, 2016 | 42 | 2016 |

Eigenvalues of the *p*(*x*)-biharmonic operator with indefinite weightB Ge, QM Zhou, YH Wu Zeitschrift für angewandte Mathematik und Physik 66, 1007-1021, 2015 | 40 | 2015 |

On superlinear p (x)-Laplacian-like problem without Ambrosetti and Rabinowitz condition G Bin Bulletin of the Korean Mathematical Society 51 (2), 409-421, 2014 | 34 | 2014 |

Multiple solutions for a Robin‐type differential inclusion problem involving the *p*(*x*)‐LaplacianB Ge, QM Zhou Mathematical Methods in the Applied Sciences 40 (18), 6229-6238, 2017 | 29 | 2017 |

Multiple solutions for a class of fractional boundary value problems G Bin Abstract and Applied Analysis 2012 (1), 468980, 2012 | 26 | 2012 |

Infinitely many solutions for a differential inclusion problem in involving p (x)-Laplacian and oscillatory terms B Ge, QM Zhou, XP Xue Zeitschrift für angewandte Mathematik und Physik 63 (4), 691-711, 2012 | 20 | 2012 |

Multiple solutions for inequality Dirichlet problems by the p (x)-Laplacian B Ge, X Xue Nonlinear Analysis: Real World Applications 11 (4), 3198-3210, 2010 | 20 | 2010 |

Data privacy security guaranteed network intrusion detection system based on federated learning J Shi, B Ge, Y Liu, Y Yan, S Li IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops …, 2021 | 18 | 2021 |

Existence of infinitely many solutions for double phase problem with sign-changing potential B Ge, ZY Chen Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie …, 2019 | 17 | 2019 |

On a class of double-phase problem without Ambrosetti–Rabinowitz-type conditions B Ge, LY Wang, JF Lu Applicable Analysis 100 (10), 2147-2162, 2021 | 16 | 2021 |

The existence of radial solutions for differential inclusion problems in RN involving the p (x)-Laplacian B Ge, X Xue, Q Zhou Nonlinear Analysis: Theory, Methods & Applications 73 (3), 622-633, 2010 | 16 | 2010 |

Existence of solutions for double-phase problems by topological degree BS Wang, GL Hou, B Ge Journal of Fixed Point Theory and Applications 23, 1-10, 2021 | 13 | 2021 |

Variable-order fractional Sobolev spaces and nonlinear elliptic equations with variable exponents Y Cheng, B Ge, RP Agarwal Journal of Mathematical Physics 61 (7), 2020 | 13 | 2020 |

Existence of at least five solutions for a differential inclusion problem involving the p (x)-Laplacian B Ge, X Xue, Q Zhou Nonlinear Analysis: Real World Applications 12 (4), 2304-2318, 2011 | 13 | 2011 |

Quasilinear double phase problems in the whole space via perturbation methods B Ge, P Pucci Advances in Differential Equations 27 (1/2), 1-30, 2022 | 12 | 2022 |

Existence and Uniqueness of Solutions for the *p*(*x*)-Laplacian Equation with Convection TermBS Wang, GL Hou, B Ge Mathematics 8 (10), 1768, 2020 | 11 | 2020 |

Infinitely many solutions for a non-homogeneous differential inclusion with lack of compactness B Ge, VD Rădulescu Advanced Nonlinear Studies 19 (3), 625-637, 2019 | 11 | 2019 |