Seguir
Emanuel Laude
Emanuel Laude
Postdoctoral Researcher, KU Leuven, Belgium
Dirección de correo verificada de esat.kuleuven.be
Título
Citado por
Citado por
Año
Sublabel-accurate relaxation of nonconvex energies
T Mollenhoff, E Laude, M Moeller, J Lellmann, D Cremers
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016
502016
Sublabel-accurate convex relaxation of vectorial multilabel energies
E Laude, T Möllenhoff, M Moeller, J Lellmann, D Cremers
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016
302016
Bregman proximal mappings and Bregman–Moreau envelopes under relative prox-regularity
E Laude, P Ochs, D Cremers
Journal of Optimization Theory and Applications 184, 724-761, 2020
172020
Lifting the convex conjugate in Lagrangian relaxations: A tractable approach for continuous Markov random fields
H Bauermeister, E Laude, T Möllenhoff, M Moeller, D Cremers
SIAM Journal on Imaging Sciences 15 (3), 1253-1281, 2022
112022
A nonconvex proximal splitting algorithm under Moreau-Yosida regularization
E Laude, T Wu, D Cremers
International Conference on Artificial Intelligence and Statistics, 491-499, 2018
102018
Bregman proximal gradient algorithms for deep matrix factorization
MC Mukkamala, F Westerkamp, E Laude, D Cremers, P Ochs
International Conference on Scale Space and Variational Methods in Computer …, 2021
9*2021
Distributed photometric bundle adjustment
N Demmel, M Gao, E Laude, T Wu, D Cremers
2020 International Conference on 3D Vision (3DV), 140-149, 2020
92020
Discrete-Continuous ADMM for Transductive Inference in Higher-Order MRFs
E Laude, JH Lange, J Schüpfer, C Domokos, L Leal-Taixé, FR Schmidt, ...
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
9*2018
Optimization of inf-convolution regularized nonconvex composite problems
E Laude, T Wu, D Cremers
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
62019
Anisotropic proximal gradient
E Laude, P Patrinos
arXiv preprint arXiv:2210.15531, 2022
42022
Dualities for non-Euclidean smoothness and strong convexity under the light of generalized conjugacy
E Laude, A Themelis, P Patrinos
SIAM Journal on Optimization 33 (4), 2721-2749, 2023
3*2023
Adaptive proximal gradient methods are universal without approximation
KA Oikonomidis, E Laude, P Latafat, A Themelis, P Patrinos
arXiv preprint arXiv:2402.06271, 2024
22024
Power proximal point and augmented Lagrangian method
KA Oikonomidis, A Bodard, E Laude, P Patrinos
arXiv preprint arXiv:2312.12205, 2023
22023
Anisotropic proximal point algorithm
E Laude, P Patrinos
arXiv preprint arXiv:2312.09834, 2023
22023
Lower envelopes and lifting for structured nonconvex optimization
E Laude
Technische Universität München, 2021
22021
Convex relaxations for large-scale graphically structured nonconvex problems with spherical constraints: An optimal transport approach
R Kenis, E Laude, P Patrinos
arXiv preprint arXiv:2308.00079, 2023
2023
Convex Relaxations for Manifold-Valued Markov Random Fields with Approximation Guarantees
R Kenis, E Laude, P Patrinos
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–17