Follow
Alessia De Biase
Alessia De Biase
PhD Candidate at University of Groningen, University Medical Center Groningen, Department of
Verified email at umcg.nl
Title
Cited by
Cited by
Year
Deep learning aided oropharyngeal cancer segmentation with adaptive thresholding for predicted tumor probability in FDG PET and CT images
A De Biase, NM Sijtsema, LV van Dijk, JA Langendijk, PMA van Ooijen
Physics in Medicine & Biology 68 (5), 055013, 2023
162023
Skip-SCSE multi-scale attention and co-learning method for oropharyngeal tumor segmentation on multi-modal PET-CT images
A De Biase, W Tang, N Sourlos, B Ma, J Guo, NM Sijtsema, P van Ooijen
3D Head and Neck Tumor Segmentation in PET/CT Challenge, 109-120, 2021
122021
Self-supervised multi-modality image feature extraction for the progression free survival prediction in head and neck cancer
B Ma, J Guo, A De Biase, N Sourlos, W Tang, P van Ooijen, S Both, ...
3D Head and Neck Tumor Segmentation in PET/CT Challenge, 308-317, 2021
102021
Standardization of artificial intelligence development in radiotherapy
A de Biase, N Sourlos, PMA van Ooijen
Seminars in radiation oncology 32 (4), 415-420, 2022
72022
Swin UNETR for Tumor and Lymph Node Segmentation Using 3D PET/CT Imaging: A Transfer Learning Approach
H Chu, LR De la O Arévalo, W Tang, B Ma, Y Li, A De Biase, S Both, ...
3D Head and Neck Tumor Segmentation in PET/CT Challenge, 114-120, 2022
62022
Deep learning-based outcome prediction using PET/CT and automatically predicted probability maps of primary tumor in patients with oropharyngeal cancer
A De Biase, B Ma, J Guo, LV van Dijk, JA Langendijk, S Both, ...
Computer Methods and Programs in Biomedicine 244, 107939, 2024
52024
Generative Adversarial Networks to enhance decision support in digital pathology
A De Biase
22019
PET/CT based transformer model for multi-outcome prediction in oropharyngeal cancer
B Ma, J Guo, A De Biase, LV van Dijk, PMA van Ooijen, JA Langendijk, ...
Radiotherapy and Oncology, 110368, 2024
12024
Probability maps for deep learning-based head and neck tumor segmentation: Graphical User Interface design and test
A De Biase, L Ziegfeld, NM Sijtsema, R Steenbakkers, R Wijsman, ...
Computers in biology and medicine, 108675, 2024
12024
Slice-by-slice deep learning aided oropharyngeal cancer segmentation with adaptive thresholding for spatial uncertainty on FDG PET and CT images
A De Biase, NM Sijtsema, L van Dijk, JA Langendijk, P van Ooijen
arXiv preprint arXiv:2207.01623, 2022
12022
PO-1606 Slice-by-slice deep learning aided oropharyngeal cancer segmentation on PET and CT images
A De Biase, NM Sijtsema, JA Langendijk, LV van Dijk, PM van Ooijen
Radiotherapy and Oncology 170, S1392-S1394, 2022
12022
EP01. 15: Exploring the role of machine learning models to improve prediction of prognosis in unilateral congenital uropathies
L Brinkman, S Spinnato, V Gracchi, L Duin, CM Bilardo, A De Biase, ...
Ultrasound in Obstetrics & Gynecology 64, 111-111, 2024
2024
EP01. 10: Interoperator variability and accuracy in fetal renal parenchyma assessment versus machine learning model in unilateral obstructive uropathies
S Spinnato, L Brinkman, A De Biase, V Gracchi, L Duin, CM Bilardo, ...
Ultrasound in Obstetrics & Gynecology 64, 109-110, 2024
2024
2715: Empowering robust tumour segmentation in multi-centre OPC cohorts: DL tumour probability maps
A De Biase, NM Sijtsema, RJHM Steenbakkers, JA Langendijk, ...
Radiotherapy and Oncology 194, S3129-S3132, 2024
2024
Fetal echogenic bowel: what is real echogenicity? A quantitative method based on histogram analysis of the grayscale
S Spinnato, A De Biase, CM Bilardo, A Elvan-Taşpınar
Fetal Diagnosis and Therapy 51 (2), 145-153, 2024
2024
Uncertainty-Aware Deep Learning for Segmentation of Primary Tumour and Pathologic Lymph Nodes in Oropharyngeal Cancer: Insights from a Multi-Centre Cohort
A De Biase, NM Sijtsema, LV van Dijk, R Steenbakkers, JA Langendijk, ...
2024
PO-1656 autoencoder-based quality assurance of deep learning segmentation of parotid glands in HNC patients
SW Zijlstra, A de Biase, C Brouwer, S Both, J Langendijk, P van Ooijen
Radiotherapy and Oncology 182, S1357-S1358, 2023
2023
PD-0167 Predicted tumour probability maps improve deep learning outcome prediction in oropharyngeal cancer
B Ma, A De Biase, J Guo, LV van Dijk, JA Langendijk, S Both, ...
Radiotherapy and Oncology 182, S127-S128, 2023
2023
MO-0800 Is one contour all we need? Rethinking the output of DL tumour auto-segmentation models for OPC
A De Biase, NM Sijtsema, L van Dijk, R Steenbakkers, J Langendijk, ...
Radiotherapy and Oncology 182, S671-S672, 2023
2023
PO-1777 Self-supervised image feature extraction for outcomes prediction in oropharyngeal cancer
B Ma, J Guo, H Chu, A De Biase, N Sourlos, W Tang, JA Langendijk, ...
Radiotherapy and Oncology 170, S1583-S1584, 2022
2022
The system can't perform the operation now. Try again later.
Articles 1–20